

AMCA International

IAQ and Energy Efficiency

William P. Bahnfleth, PhD, PE

Professor, Director Indoor Environment Center Penn State, University Park, PA, USA wbahnfleth@psu.edu

PennState College of Engineering

ARCHITECTURAL ENGINEERING

Air System Engineering & Technology (ASET) Conference-Europe Lyon, France • L'Espace Tête d'Or • 20 February 2018

20 Feb. 2018 www.aset-europe.com

AMCA ASET-Europe Conference, Lyon, France

Copyright AMCA International • www.amca.org

Copyright Materials

This educational activity is protected by U.S. and International copyright laws. Reproduction, distribution, display, and use of the educational activity without written permission of the presenter is prohibited.

© AMCA International

AMCA ASET-Europe Conference, Lyon, France

Learning Objectives

- Explain the connection between indoor air quality (IAQ) and building energy use.
- Compare the cost of health and performance impacts of IAQ with the cost of building energy use
- Explain the basis for current IAQ design standards
- Describe existing technologies with potential to improve IAQ with small or beneficial impact on energy use
- Explain how the design process should be modified to better integrate IAQ

Buildings are the largest energy end-use sector

• ~ 40% of US primary energy use

Most building energy use is for environmental control

- US buildings, all types
 - Space heating 37%
 - Lighting 10%
 - Space cooling 9%
 - Ventilation 3%
 - TOTAL 59%
 - HVAC 49%

Energy use and its impact on climate are recognized global issues

- More than 40 years of major effort
 - Energy standards (1970s)
 - Montreal protocol (1986)
 - Kyoto protocol (1992)
 - Energy source changes
 - Lower carbon fossil fuels
 - Wind and PV electric
 - Component and system efficiency improvements

Source: Pacific Northwest National Laboratory

Compared to energy/environment, indoor air quality is an emerging issue

"That all people should have free access to air and water of acceptable quality is a fundamental human right."

~World Health Organization (2000) Air Quality Guidelines for Europe, 2nd ed.

"An energy declaration without a declaration related to the indoor environment makes no sense."

~B. Olesen, O. Seppänen, A. Boerstra (2006) *Criteria for the Indoor Environment for Energy Performance Of Buildings – A New European Standard*. Facilities 24 (11/12): 445-457.

Air quality has monetizeable effects

• 1:10:100:1000 rule of thumb _10 100 • Design cost Design Construction Construction cost Operation Occupants Operation cost 1000 Occupant cost 10% improvement in performance \cong operating cost

Economic Impact of IEQ

(Fisk, W. How IEQ Affects Health, Productivity. ASHRAE J., May 2002)

Source of Gain	Potential Annual Benefits in US	Lower \$B (2017)	Higher \$B (2017)
Reduced Respiratory Illness	16 - 37 Million Avoided Cases of Common Cold or Influenza	6 (8.2)	14 (19.2)
Reduced Allergies and Asthma	8% - 25% Decrease in Symptoms - 53 Million with Allergies, 16 Million Asthmatics	1 (1.4)	4 (5.5)
Reduced Sick Building Syndrome Symptoms	20% - 50% Less SBS Symptoms at Work for ~15 Million Workers	10 (13.7)	30 (41.1)
Lighting/Thermal	Performance improvement	20 (27.4)	160 (219.2)
TOTAL		37 (50.7)	285 (285.0)
		star	THUR HERE

Higher estimate of economic loss is ~ annual US energy bill for buildings

Human cost of IAQ - asthma

- In US in 2015
 - 7.8 % of population/ 25 million people diagnosed
 - 11.6 million attacks
 - 10.5 million missed school days
 - 14.2 million missed work days
 - 439,000 hospital stays
 1.6 million emergency room visits
 - 3,615 deaths

- Indoor pollutants that are asthma triggers (CDC)
 - ETS
 - Dust mites
 - Outdoor air pollution
 - Cockroach allergens
 - Pets
 - Mold
 - Wood and grass smoke
 - Respiratory infections

Human cost of IAQ – developing world

HAP: Household air pollution; Amr: America, Afr: Africa; Emr: Eastern Mediterranean, Sear: South-East Asia, Wpr: Western Pacific; LMI: Low- and middle-income; HI: High-income.

Estimated 4.3 million excess deaths in 2012 due to indoor PM, mostly biomass combustion (WHO 2014)

- Health effects
 - 34% stroke
 - 26% ischemic heart disease
 - 22% COPD
 - 12% acute lower respiratory infections in children

11

6% - lung cancer

Current practical definition of IAQ – perceived air quality

Acceptable Indoor Air Quality: air in which there are <u>no known</u> <u>contaminants at harmful concentrations</u> as determined by cognizant authorities and <u>with which a substantial majority (80%</u> <u>or more) of the people exposed do not express dissatisfaction</u>.

(ASHRAE Standard 62.1-2016 Ventilation for Acceptable Indoor Air Quality)

Current approach to IAQ control

- Reduce/remove known sources of contaminants
- Manage moisture
- Ventilate to achieve subjective satisfaction
 - ASHRAE 62.1 ~5-10 L/s-pers
- Moderate level of particulate filtration
 - ASHRAE 62.1 MERV 8: 70-85% for > 3 $\mu m,$ NR for PM $_{2.5}$

Fanger, P. O. (2008) "Perceived Air Quality and Ventilation Requirements" in Indoor Air Quality Handbook, J. Spengler, J. McCarthy and J. Samet eds.

Current ventilation standards set a low bar for health and productivity

Sick building syndrome symptoms

Source: W. Fisk, A Mirer, M. Mendell. 2009. Quantitative relationship of sick building syndrome symptoms with ventilation rates. Indoor Air

Task performance

Source: Seppänen, O. and W. Fisk. 2006. Some Quantitative Relations between Indoor Environmental Quality and Work Performance or Health. HVAC&R Research.

Schoolwork performance

Source: P. Wargocki and D. Wyon. 2006. Effects of HVAC on Student Performance. ASHRAE Journal. (Summarizing ASHRAE RP-1257)

20 Feb. 2018 www.aset-europe.com

AMCA ASET-Europe Conference, Lyon, France

Infectious disease transmission

Mean ventilation rate in winter, L/s per person

Figure 4. Associations between common cold infection rates and mean ventilation rate in winter in buildings constructed after year 1993. ¹ Proportion of occupants with \geq 6 common colds in the previous 12 months. Source: Sun, Y., Z. Wang, Y. Zhang, J. Sundell. 2011, In China, Students in Crowded Dormitories with a Low Ventilation Rate Have More Common Colds: Evidence for Airborne Transmission. PLoS ONE 6(11) e27140.

Recent studies on cognitive effects of CO₂ with fixed and proportional bioeffluent

Figure 2. Impact of CO₂ on human decision-making performance. Error bars indicate 1 SD.

Satish, et al. – cognitive effects of CO_2 alone at concentrations compliant with current ventilation minimum standards

Source: Satish, U., M. Mendell, K. Shekhar, T. Hotchi, D. Sullivan, S. Streufert, and W. Fisk. 2013. Is CO_2 an Indoor Pollutant? Direct Effects of Lowto-Moderate CO_2 Concentrations on Human Decision-Making Performance. Env. Health Perspectives 20(12):1671-1677.

Recent studies on cognitive effects of CO₂ with fixed and proportional bioeffluent

Zhang, et al – cognitive deficit, but only with proportional bioeffluent at lower CO_2 concentrations

Source: Zhang, X., P. Wargocki, Z. Lian, C. Thyregod. 2017. Effects of exposure to carbon dioxide and bioeffluents on perceived air quality, self-assessed acute health symptoms, and cognitive performance. Indoor Air 27:47-64.

Energy efficiency and IAQ are in conflict and energy usually wins

Energy

- Measured accurately
- Monetized
- Efficiency has positive environmental impact
- Existing design process focused on optimizing energy cost and capital cost

Indoor Air Quality

- Prescriptive perceived air quality approach
- Not accurately monetized
- Without attention to energy use, IAQ improvements may increase energy
 - Ventilation stands in for IAQ and is a design constraint

Agenda for integrating IAQ and energy efficiency

- Translational research: science \rightarrow application
- Education and training
- Deploy efficient technology to improve IAQ
- Design process changes

Building technology is not the first priority

Hierarchy of Controls

- Engineering controls limit exposure
- Exposure ∞ source strength
- Smaller sources require less treatment

Source: US National Institute of Occupational Safety and Health (NIOSH)

Ventilation

- Dilute contaminants and remove them in exhaust air
- Methods for providing ventilation with low energy demand
 - Natural ventilation
 - Air-to-air energy recovery
 - Demand-controlled ventilation
 - Air-side economizer
 - Dedicated outdoor air supply (DOAS)
 - Improved ventilation air delivery methods

Ventilation – Natural Ventilation

- Effectiveness varies with climate and thermal comfort estimate ~20 – 50% cooling for US
- Applicability in urban environments compromised by outdoor air quality
- As applied, concerns about seasonal effectiveness, occupant use
- ASHRAE Standard 62.1 requires most NV systems be backed up by mechanical ventilation
- Requires acceptance of adaptive model of comfort

Source: Construction Canada

Ventilation – Air-Air Heat Recovery

- Should be considered for all systems
- "Total energy" recovery replacing sensible for cooling systems
- ASHRAE Standard 90.1 requires exhaust air energy recovery with enthalpy recovery ratio \geq 50% for covered systems

Ventilation – Air-Air Heat Recovery

Source: ASHRAE. 2017. Design Guide for Dedicated Outdoor Air Systems

Ventilation – Demand Controlled (DCV)

- Ventilation standards specify OA requirements based on area and occupancy
- DCV limits allows reduction based on actual occupancy
- Advanced strategies may also consider PM, VOCs, humidity
- May be required by energy standards like ASHRAE 90.1 for some spaces
- Issues
 - Difficulty/cost of accurate occupant counts CO₂ most common
 - Control to minimum standards increased health/performance deficits
 - Could improve IAQ if per-person ventilation rate is correspondingly increased

Ventilation – Demand Controlled

 Life-cycle cost analysis including health and productivity effects shows that higher ventilation rates can be cost optimal

Source: Johansson, D. 2009. The life cycle costs of indoor climate systems in dwellings and offices taking into account system choice, airflow rate, health and productivity. Building and Environment (44):368-376.

Ventilation – Air-Side Economizer

- Increase OA to reduce coil cooling load based on T or h
- Saves energy and increases ventilation
- Required for some systems by ASHRAE Standard 90.1

Source: Taylor and Cheng. 2010. ASHRAE Journal.

Dry Air

of

rains/lb

5

Ratio,

Humidity

Ventilation – Air-Side Economizer

- Monetized IAQ benefit of economizer can exceed energy cost savings
- Example:
 - Fisk, W., D. Faulkner, O. Seppänen, J. Huang. 2005. Economic Benefits of an Economizer System: Energy Savings and Reduced Sick Leave. ASHRAE Transactions 111(2).
 - Combines energy modeling with Wells-Riley based sick leave analysis for two-story office in Washington DC.

Ventilation – Air-Side Economizer

					,		,		
Min Vent [*]	Vent Rate [†]	Economizer	¢	Annual HVAC Energy		Lower and	Upper Estima	ate of Annua	I Sick Leave
			Elec.	Gas		Lower		Upper	
L s ⁻¹	h ⁻¹	Y or N	MWh	Therm (GJ)	Total \$US	Days	Lower \$	Days	Upper \$
10	0.74	N	298	6390 (674)	30000	264	53000	340	68000
10	1.46	Y	269	6690 (706)	28000	186	37000	274	55000
10	Savings from economizer			1900	78	16000	66	13000	
15	0.96	Ν	303	6630(699)	31000	216	13000	321	\$4020
15	1.56	Y	272	6850 (723)	29000	162	32000	267	53000
15	Savings from economizer			2100	54	11000	54	11000	
20	1.18	N	308	6960 (734)	31000	180	36000	298	60000
20	1.67	Y	276	7130 (752)	29000	150	30000	259	52000
20	Savings from economizer			2200	30	6000	39	7700	

Source: Fisk, et al. 2005. ASHRAE Trans.

Table 2. Predicted Annual HVAC Energy Use, Ventilation Rates, and Sick Leave

* Per person

† Yearly average

Note: Numbers may not add precisely due to rounding.

Health benefit is 3 – 8 times greater than energy savings

Ventilation – DOAS

- "Dual-path"
 - 100% OA system latent load, ventilation, partial sensible
 - Parallel sensible system
- Energy recovery
- Many parallel system options
 - Fan coil units
 - Chilled beams
 - Radiant panels
 - Variable air volume

Source: ASHRAE. 2017. Design Guide for Dedicated Outdoor Air Systems

Ventilation – DOAS

Source: ASHRAE. 2017. Design Guide for Dedicated Outdoor Air Systems

Ventilation – DOAS

Source: Jeong, Mumma, and Bahnfleth. 2003. Energy Conservation Benefits of a Dedicated Outdoor Air System with Parallel Sensible Cooling by Ceiling Radiant Panels ASHRAE Trans.

Ventilation – Improved Air Delivery

- Alternatives to overhead mixing ventilation
 - Underfloor air distribution
 - Displacement ventilation
 - Personal ventilation
- All have the effect of increasing contaminant removal effectiveness
- Lower total ventilation requirement for same IAQ

Source: Chen and Glicksman. 2003. System Performance Evaluation and Design Guidelines for Displacement Ventilation. ASHRAE.

Air Cleaners

- Role of air cleaners remove contaminants not easily removed by ventilation, reduce need for ventilation
- Major classes
 - Particulate filtration
 - Gas phase filtration
 - Microbial control

Air Cleaners – Particulate

- Well-developed technology (fiber filters)
- Older minimum requirements in standards minimally address size ranges with health effects – but improving
- HEPA filters not needed to add significant value
- Higher η filters can have minimal energy impact if integrated in original design

Typical filter performance by MERV rating ASHRAE Standard 52.2

Source: Kowalski and Bahnfleth. 2002. HPAC

Air Cleaners - Particulate

• Major benefits for reduced indoor PM, especially when outdoor air levels are high

Source: Montgomery, J., C. Reynolds, S. Rogak, S. Green. 2015. Financial implications of modifications to building filtration systems. Building and Environment 85:17-28.

Air Cleaners – Gas phase

- Not required by minimum prescriptive standards
- Sorbent media (activated carbon, permanganates) are best established
- Photocatalysis has promise and problems
- Many issues
 - What to control
 - Can it be measured accurately
 - What are control levels
 - Secondary contaminant generation
 - Reliability

Air Cleaners – Microbial

- Particle filtration can be effective but costly and energy intensive for high efficiency at small particle sizes
- Ultraviolet germicidal irradiation (UVGI) is a low energy alternative/adjunct ventilation rates and particle filtration
 - High effectiveness when applied appropriately
 - Low lamp energy consumption
 - Low pressure drop
 - Peer reviewed effectiveness in reducing airborne infections
- Other methods

Microbial Air Cleaners - UVGI

- UVC damages microbial DNA and RNA
- 254 nm UVC produced by Hg vapor lamps
- UVC LED technology developing
- Exponential dose-response relationship

$$S = \exp(-kIt)$$

Source: 2015 ASHRAE Handbook-HVAC Applications, Ch. 60, Fig. 3

Microbial Air Cleaners - UVGI

- Typical applications
 - "In-duct" in air handling unit
 - Upper-air in occupied spaces

Source: 2015 ASHRAE Handbook—HVAC Applications, Ch. 60, Fig. 6

Microbial Air Cleaners - UVGI

Coil UVGI

- Irradiation of coil surfaces to control biological growth
- Reduces air-side flow resistance
- Increases air-side heat transfer coefficient
- Saves energy and maintenance cost

- Recent studies in US and Singapore
 - Ability to reduce energy use
 - Significant impact on airborne microbial load and expected impact on air quality
 - Cost-effective in high latentload climates where cooling is needed

Wang, Y., C. Sekhar, W. Bahnfleth, D. Cheong, J. Firrantello. 2017. Effects of Ultraviolet Coil Irradiation Systems on Air-side Heat Transfer Coefficient and Low \triangle T Syndrome in a Hot and Humid Climate. Science and Technology for the Built Environment 23(4):582-593.

Renewable energy supply changes the equation

- Energy efficiency is still a virtue,...however
 - IAQ benefits do not create environmental hazard
 - IAQ benefits do not further deplete a non-renewable resource
 - Refocuses decision-making
 process on economics

Process change – Monetize IAQ properly

- Current optimization includes
 - Construction cost
 - Energy and water cost
 - Maintenance cost
- IAQ = ventilation, an input parameter
- Better process would evaluate exposures and monetize consequences

Conclusion

- Energy use of buildings and its consequence is an important societal issue and technological challenge
- Good indoor air quality is a fundamental goal of building design and operation...and consumes a lot of energy
- Based on the consequences of poor IAQ, which is common, it needs to be addressed differently in standards and design
- Technologies are available today to promote better IAQ that are energy neutral or better, and new technologies are emerging

Questions?

William P. Bahnfleth, PhD, PE

Professor of Architectural Engineering

The Pennsylvania State University

wbahnfleth@psu.edu

AMCA ASET-Europe Conference, Lyon, France